We present a novel software feature for the BrainScaleS-2 accelerated neuromorphic platform that facilitates the partitioned emulation of large-scale spiking neural networks. This approach is well suited for deep spiking neural networks and allows for sequential model emulation on undersized neuromorphic resources if the largest recurrent subnetwork and the required neuron fan-in fit on the substrate. We demonstrate the training of two deep spiking neural network models-using the MNIST …