Liquid crystalline (LC) materials are especially suited for the preparation of active three-dimensional (3D) and 4D microstructures using two-photon laser printing. To achieve the desired actuation, the alignment of the LCs has to be controlled during the printing process. In most cases studied before, the alignment relied on surface modifications and complex alignment patterns and concomitant actuation were not possible. Here, we introduce a strategy for spatially aligning LC domains …