Reconstructing gene regulatory networks (GRNs) using single-cell RNA sequencing (scRNA-seq) data holds great promise for unraveling cellular fate development and heterogeneity. While numerous machine-learning methods have been proposed to infer GRNs from scRNA-seq gene expression data, many of them operate solely in a statistical or black box manner, limiting their capacity for making causal inferences between genes. In this study, we introduce GRN inference with Accuracy and Causal …