We investigate the potential of the Deep Dose Estimate (DDE) neural network to predict 3D dose distributions inside patients with Monte Carlo (MC) accuracy, based on transmitted EPID signals and patient CTs. The network was trained using as input patient CTs and first-order dose approximations (FOD). Accurate dose distributions (ADD) simulated with MC were given as training targets. 83 pelvic CTs were used to simulate ADDs and respective EPID signals for subfields of prostate IMRT plans …